Skip to main content

A set of python modules for machine learning and data mining

Project description

Azure Travis Codecov CircleCI Python35 PyPi DOI

scikit-learn

scikit-learn is a Python module for machine learning built on top of SciPy and distributed under the 3-Clause BSD license.

The project was started in 2007 by David Cournapeau as a Google Summer of Code project, and since then many volunteers have contributed. See the About us page for a list of core contributors.

It is currently maintained by a team of volunteers.

Website: http://scikit-learn.org

Installation

Dependencies

scikit-learn requires:

  • Python (>= 3.5)

  • NumPy (>= 1.11.0)

  • SciPy (>= 0.17.0)

  • joblib (>= 0.11)

Scikit-learn 0.20 was the last version to support Python2.7. Scikit-learn 0.21 and later require Python 3.5 or newer.

For running the examples Matplotlib >= 1.5.1 is required. A few examples require scikit-image >= 0.12.3, a few examples require pandas >= 0.18.0.

User installation

If you already have a working installation of numpy and scipy, the easiest way to install scikit-learn is using pip

pip install -U scikit-learn

or conda:

conda install scikit-learn

The documentation includes more detailed installation instructions.

Changelog

See the changelog for a history of notable changes to scikit-learn.

Development

We welcome new contributors of all experience levels. The scikit-learn community goals are to be helpful, welcoming, and effective. The Development Guide has detailed information about contributing code, documentation, tests, and more. We’ve included some basic information in this README.

Source code

You can check the latest sources with the command:

git clone https://github.com/scikit-learn/scikit-learn.git

Contributing

To learn more about making a contribution to scikit-learn, please see our Contributing guide.

Testing

After installation, you can launch the test suite from outside the source directory (you will need to have pytest >= 3.3.0 installed):

pytest sklearn

See the web page http://scikit-learn.org/dev/developers/advanced_installation.html#testing for more information.

Random number generation can be controlled during testing by setting the SKLEARN_SEED environment variable.

Submitting a Pull Request

Before opening a Pull Request, have a look at the full Contributing page to make sure your code complies with our guidelines: http://scikit-learn.org/stable/developers/index.html

Project History

The project was started in 2007 by David Cournapeau as a Google Summer of Code project, and since then many volunteers have contributed. See the About us page for a list of core contributors.

The project is currently maintained by a team of volunteers.

Note: scikit-learn was previously referred to as scikits.learn.

Help and Support

Documentation

Communication

Citation

If you use scikit-learn in a scientific publication, we would appreciate citations: http://scikit-learn.org/stable/about.html#citing-scikit-learn

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

scikit-learn-0.21.3.tar.gz (12.2 MB view details)

Uploaded Source

Built Distributions

scikit_learn-0.21.3-cp37-cp37m-win_amd64.whl (5.9 MB view details)

Uploaded CPython 3.7mWindows x86-64

scikit_learn-0.21.3-cp37-cp37m-win32.whl (5.2 MB view details)

Uploaded CPython 3.7mWindows x86

scikit_learn-0.21.3-cp37-cp37m-manylinux1_x86_64.whl (6.7 MB view details)

Uploaded CPython 3.7m

scikit_learn-0.21.3-cp37-cp37m-manylinux1_i686.whl (6.0 MB view details)

Uploaded CPython 3.7m

scikit_learn-0.21.3-cp37-cp37m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (10.5 MB view details)

Uploaded CPython 3.7mmacOS 10.10+ Intel (x86-64, i386)macOS 10.10+ x86-64macOS 10.6+ Intel (x86-64, i386)macOS 10.9+ Intel (x86-64, i386)macOS 10.9+ x86-64

scikit_learn-0.21.3-cp36-cp36m-win_amd64.whl (5.9 MB view details)

Uploaded CPython 3.6mWindows x86-64

scikit_learn-0.21.3-cp36-cp36m-win32.whl (5.2 MB view details)

Uploaded CPython 3.6mWindows x86

scikit_learn-0.21.3-cp36-cp36m-manylinux1_x86_64.whl (6.7 MB view details)

Uploaded CPython 3.6m

scikit_learn-0.21.3-cp36-cp36m-manylinux1_i686.whl (6.0 MB view details)

Uploaded CPython 3.6m

scikit_learn-0.21.3-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (10.6 MB view details)

Uploaded CPython 3.6mmacOS 10.10+ Intel (x86-64, i386)macOS 10.10+ x86-64macOS 10.6+ Intel (x86-64, i386)macOS 10.9+ Intel (x86-64, i386)macOS 10.9+ x86-64

scikit_learn-0.21.3-cp35-cp35m-win_amd64.whl (5.8 MB view details)

Uploaded CPython 3.5mWindows x86-64

scikit_learn-0.21.3-cp35-cp35m-win32.whl (5.1 MB view details)

Uploaded CPython 3.5mWindows x86

scikit_learn-0.21.3-cp35-cp35m-manylinux1_x86_64.whl (6.6 MB view details)

Uploaded CPython 3.5m

scikit_learn-0.21.3-cp35-cp35m-manylinux1_i686.whl (6.0 MB view details)

Uploaded CPython 3.5m

scikit_learn-0.21.3-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (10.2 MB view details)

Uploaded CPython 3.5mmacOS 10.10+ Intel (x86-64, i386)macOS 10.10+ x86-64macOS 10.6+ Intel (x86-64, i386)macOS 10.9+ Intel (x86-64, i386)macOS 10.9+ x86-64

File details

Details for the file scikit-learn-0.21.3.tar.gz.

File metadata

  • Download URL: scikit-learn-0.21.3.tar.gz
  • Upload date:
  • Size: 12.2 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.32.1 CPython/3.7.3

File hashes

Hashes for scikit-learn-0.21.3.tar.gz
Algorithm Hash digest
SHA256 eb9b8ebf59eddd8b96366428238ab27d05a19e89c5516ce294abc35cea75d003
MD5 d7bb030fea8d503d897a0dc8c50b9241
BLAKE2b-256 1ece9d8c88e68af0a5b5c5d78d8d2b7bcadfd45e1d6afc863ccb9aee30765b06

See more details on using hashes here.

File details

Details for the file scikit_learn-0.21.3-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: scikit_learn-0.21.3-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 5.9 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.32.1 CPython/3.7.3

File hashes

Hashes for scikit_learn-0.21.3-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 928050b65781fea9542dfe9bfe02d8c4f5530baa8472ec60782ea77347d2c836
MD5 a1eca6df53bc2b5a4ab7ff6689f9b2c2
BLAKE2b-256 d69e6a42486ffa64711fb868e5d4a9167153417e7414c3d8d3e0d627cf391e1e

See more details on using hashes here.

File details

Details for the file scikit_learn-0.21.3-cp37-cp37m-win32.whl.

File metadata

  • Download URL: scikit_learn-0.21.3-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 5.2 MB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.32.1 CPython/3.7.3

File hashes

Hashes for scikit_learn-0.21.3-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 eb2b7bed0a26ba5ce3700e15938b28a4f4513578d3e54a2156c29df19ac5fd01
MD5 9eee3ad48e6795eeb94987c3f700952f
BLAKE2b-256 dbc85903e8f826f3b1b845942798f4948a817b6334f9601927c0eea09148cd70

See more details on using hashes here.

File details

Details for the file scikit_learn-0.21.3-cp37-cp37m-manylinux1_x86_64.whl.

File metadata

  • Download URL: scikit_learn-0.21.3-cp37-cp37m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 6.7 MB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.32.1 CPython/3.7.3

File hashes

Hashes for scikit_learn-0.21.3-cp37-cp37m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 8d319b71c449627d178f21c57614e21747e54bb3fc9602b6f42906c3931aa320
MD5 02fb73f38dfa8c8dcd0594237bfe5a9c
BLAKE2b-256 9fc5e5267eb84994e9a92a2c6a6ee768514f255d036f3c8378acfa694e9f2c99

See more details on using hashes here.

File details

Details for the file scikit_learn-0.21.3-cp37-cp37m-manylinux1_i686.whl.

File metadata

  • Download URL: scikit_learn-0.21.3-cp37-cp37m-manylinux1_i686.whl
  • Upload date:
  • Size: 6.0 MB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.32.1 CPython/3.7.3

File hashes

Hashes for scikit_learn-0.21.3-cp37-cp37m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 777cdd5c077b7ca9cb381396c81990cf41d2fa8350760d3cad3b4c460a7db644
MD5 951d4f75f78069b28d725ab7408b8824
BLAKE2b-256 e503f91db270a92322951f4a85ede5b7cea23a934a38124331c3b8c2037a1148

See more details on using hashes here.

File details

Details for the file scikit_learn-0.21.3-cp37-cp37m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for scikit_learn-0.21.3-cp37-cp37m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 92c903613ff50e22aa95d589f9fff5deb6f34e79f7f21f609680087f137bb524
MD5 18d7c1960e3ca7d691dc7438aec61b2e
BLAKE2b-256 e9578a9889d49d0d77905af5a7524fb2b468d2ef5fc723684f51f5ca63efed0d

See more details on using hashes here.

File details

Details for the file scikit_learn-0.21.3-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: scikit_learn-0.21.3-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 5.9 MB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.32.1 CPython/3.7.3

File hashes

Hashes for scikit_learn-0.21.3-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 d146d5443cda0a41f74276e42faf8c7f283fef49e8a853b832885239ef544e05
MD5 4793744790b673a3076822b14755eb73
BLAKE2b-256 767960050330fe57fb59f2c53d0d11673df28c20ea9315da3652477429fc4949

See more details on using hashes here.

File details

Details for the file scikit_learn-0.21.3-cp36-cp36m-win32.whl.

File metadata

  • Download URL: scikit_learn-0.21.3-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 5.2 MB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.32.1 CPython/3.7.3

File hashes

Hashes for scikit_learn-0.21.3-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 1ac81293d261747c25ea5a0ee8cd2bb1f3b5ba9ec05421a7f9f0feb4eb7c4116
MD5 69f759b21b68fde79ea3c23143eb3356
BLAKE2b-256 c18d42c8cfca4ff0ec52a938db127ee99714083c5b786d00ed567ac2ec432b7d

See more details on using hashes here.

File details

Details for the file scikit_learn-0.21.3-cp36-cp36m-manylinux1_x86_64.whl.

File metadata

  • Download URL: scikit_learn-0.21.3-cp36-cp36m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 6.7 MB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.32.1 CPython/3.7.3

File hashes

Hashes for scikit_learn-0.21.3-cp36-cp36m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 ae322235def5ce8fae645b439e332e6f25d34bb90d6a6c8e261f17eb476457b7
MD5 140ce1369f7247dfc9b7ecc3fde61dc9
BLAKE2b-256 a0c5d2238762d780dde84a20b8c761f563fe882b88c5a5fb03c056547c442a19

See more details on using hashes here.

File details

Details for the file scikit_learn-0.21.3-cp36-cp36m-manylinux1_i686.whl.

File metadata

  • Download URL: scikit_learn-0.21.3-cp36-cp36m-manylinux1_i686.whl
  • Upload date:
  • Size: 6.0 MB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.32.1 CPython/3.7.3

File hashes

Hashes for scikit_learn-0.21.3-cp36-cp36m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 c41a6e2685d06bcdb0d26533af2540f54884d40db7e48baed6a5bcbf1a7cc642
MD5 ceefa13099e35aaf8983f56513178493
BLAKE2b-256 0a3b9f1f2b89c4387e008af6d5db7ad4036ec3cf7b4c9742b6477acaa487b65c

See more details on using hashes here.

File details

Details for the file scikit_learn-0.21.3-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for scikit_learn-0.21.3-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 3a14d0abd4281fc3fd2149c486c3ec7cedad848b8d5f7b6f61522029d65a29f8
MD5 fd6b8cb6d1594e534f75d6ff0960d15e
BLAKE2b-256 cfb8706e496d8b1207c1da154a7fe82753a2385edc1435ec524afa6c1baafed6

See more details on using hashes here.

File details

Details for the file scikit_learn-0.21.3-cp35-cp35m-win_amd64.whl.

File metadata

  • Download URL: scikit_learn-0.21.3-cp35-cp35m-win_amd64.whl
  • Upload date:
  • Size: 5.8 MB
  • Tags: CPython 3.5m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.32.1 CPython/3.7.3

File hashes

Hashes for scikit_learn-0.21.3-cp35-cp35m-win_amd64.whl
Algorithm Hash digest
SHA256 289361cf003d90b007f5066b27fcddc2d71324c82f1c88e316fedacb0dfdd516
MD5 b990ed4430286b7ece85f98c055e506c
BLAKE2b-256 2a2696b3628f1ad4d66a25cf4e26a87c8d5983c9c1ff27563445b70e3beadcdd

See more details on using hashes here.

File details

Details for the file scikit_learn-0.21.3-cp35-cp35m-win32.whl.

File metadata

  • Download URL: scikit_learn-0.21.3-cp35-cp35m-win32.whl
  • Upload date:
  • Size: 5.1 MB
  • Tags: CPython 3.5m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.32.1 CPython/3.7.3

File hashes

Hashes for scikit_learn-0.21.3-cp35-cp35m-win32.whl
Algorithm Hash digest
SHA256 8bf2ff63da820d09b96b18e88f9625228457bff8df4618f6b087e12442ef9e15
MD5 e2b3f11b65505f40517fc6ed88d4df8f
BLAKE2b-256 b6e8fbacce7b8e53436456d89c528edfc2bdcbdd6dbd8abf4837d5b2ec2feb5d

See more details on using hashes here.

File details

Details for the file scikit_learn-0.21.3-cp35-cp35m-manylinux1_x86_64.whl.

File metadata

  • Download URL: scikit_learn-0.21.3-cp35-cp35m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 6.6 MB
  • Tags: CPython 3.5m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.32.1 CPython/3.7.3

File hashes

Hashes for scikit_learn-0.21.3-cp35-cp35m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 d07fcb0c0acbc043faa0e7cf4d2037f71193de3fb04fb8ed5c259b089af1cf5c
MD5 47f01cf59e082d658229866eef9ffd32
BLAKE2b-256 1fafe3c3cd6f61093830059138624dbd26d938d6da1caeec5aeabe772b916069

See more details on using hashes here.

File details

Details for the file scikit_learn-0.21.3-cp35-cp35m-manylinux1_i686.whl.

File metadata

  • Download URL: scikit_learn-0.21.3-cp35-cp35m-manylinux1_i686.whl
  • Upload date:
  • Size: 6.0 MB
  • Tags: CPython 3.5m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.32.1 CPython/3.7.3

File hashes

Hashes for scikit_learn-0.21.3-cp35-cp35m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 c1cd6b29eb1fd1cc672ac5e4a8be5f6ea936d094a3dc659ada0746d6fac750b1
MD5 1ad24926bab52a73a19cda6b54be4413
BLAKE2b-256 a95d9f8cf815981bde2545944c4912853d655319118e1dc819f85f12194c4291

See more details on using hashes here.

File details

Details for the file scikit_learn-0.21.3-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for scikit_learn-0.21.3-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 5083a5e50d9d54548e4ada829598ae63a05651dd2bb319f821ffd9e8388384a6
MD5 80eb1b279151907822938592e2516400
BLAKE2b-256 4d737b6c17c3738de4c8fc42b626eb26e7756ef8624b0b8729d0820216932721

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page