Skip to main content

A set of python modules for machine learning and data mining

Project description

Azure CirrusCI Codecov CircleCI Nightly wheels Black PythonVersion PyPi DOI Benchmark

https://raw.githubusercontent.com/scikit-learn/scikit-learn/main/doc/logos/scikit-learn-logo.png

scikit-learn is a Python module for machine learning built on top of SciPy and is distributed under the 3-Clause BSD license.

The project was started in 2007 by David Cournapeau as a Google Summer of Code project, and since then many volunteers have contributed. See the About us page for a list of core contributors.

It is currently maintained by a team of volunteers.

Website: https://scikit-learn.org

Installation

Dependencies

scikit-learn requires:

  • Python (>= 3.9)

  • NumPy (>= 1.19.5)

  • SciPy (>= 1.6.0)

  • joblib (>= 1.2.0)

  • threadpoolctl (>= 3.1.0)


Scikit-learn 0.20 was the last version to support Python 2.7 and Python 3.4. scikit-learn 1.0 and later require Python 3.7 or newer. scikit-learn 1.1 and later require Python 3.8 or newer.

Scikit-learn plotting capabilities (i.e., functions start with plot_ and classes end with Display) require Matplotlib (>= 3.3.4). For running the examples Matplotlib >= 3.3.4 is required. A few examples require scikit-image >= 0.17.2, a few examples require pandas >= 1.1.5, some examples require seaborn >= 0.9.0 and plotly >= 5.14.0.

User installation

If you already have a working installation of NumPy and SciPy, the easiest way to install scikit-learn is using pip:

pip install -U scikit-learn

or conda:

conda install -c conda-forge scikit-learn

The documentation includes more detailed installation instructions.

Changelog

See the changelog for a history of notable changes to scikit-learn.

Development

We welcome new contributors of all experience levels. The scikit-learn community goals are to be helpful, welcoming, and effective. The Development Guide has detailed information about contributing code, documentation, tests, and more. We’ve included some basic information in this README.

Source code

You can check the latest sources with the command:

git clone https://github.com/scikit-learn/scikit-learn.git

Contributing

To learn more about making a contribution to scikit-learn, please see our Contributing guide.

Testing

After installation, you can launch the test suite from outside the source directory (you will need to have pytest >= 7.1.2 installed):

pytest sklearn

See the web page https://scikit-learn.org/dev/developers/contributing.html#testing-and-improving-test-coverage for more information.

Random number generation can be controlled during testing by setting the SKLEARN_SEED environment variable.

Submitting a Pull Request

Before opening a Pull Request, have a look at the full Contributing page to make sure your code complies with our guidelines: https://scikit-learn.org/stable/developers/index.html

Project History

The project was started in 2007 by David Cournapeau as a Google Summer of Code project, and since then many volunteers have contributed. See the About us page for a list of core contributors.

The project is currently maintained by a team of volunteers.

Note: scikit-learn was previously referred to as scikits.learn.

Help and Support

Documentation

Communication

Citation

If you use scikit-learn in a scientific publication, we would appreciate citations: https://scikit-learn.org/stable/about.html#citing-scikit-learn

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

scikit_learn-1.5.0.tar.gz (7.8 MB view details)

Uploaded Source

Built Distributions

scikit_learn-1.5.0-cp312-cp312-win_amd64.whl (10.9 MB view details)

Uploaded CPython 3.12 Windows x86-64

scikit_learn-1.5.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (13.1 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

scikit_learn-1.5.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (12.1 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

scikit_learn-1.5.0-cp312-cp312-macosx_12_0_arm64.whl (11.0 MB view details)

Uploaded CPython 3.12 macOS 12.0+ ARM64

scikit_learn-1.5.0-cp312-cp312-macosx_10_9_x86_64.whl (12.1 MB view details)

Uploaded CPython 3.12 macOS 10.9+ x86-64

scikit_learn-1.5.0-cp311-cp311-win_amd64.whl (11.0 MB view details)

Uploaded CPython 3.11 Windows x86-64

scikit_learn-1.5.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (13.3 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

scikit_learn-1.5.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (12.5 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

scikit_learn-1.5.0-cp311-cp311-macosx_12_0_arm64.whl (11.0 MB view details)

Uploaded CPython 3.11 macOS 12.0+ ARM64

scikit_learn-1.5.0-cp311-cp311-macosx_10_9_x86_64.whl (12.1 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

scikit_learn-1.5.0-cp310-cp310-win_amd64.whl (11.0 MB view details)

Uploaded CPython 3.10 Windows x86-64

scikit_learn-1.5.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (13.3 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

scikit_learn-1.5.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (12.5 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

scikit_learn-1.5.0-cp310-cp310-macosx_12_0_arm64.whl (11.0 MB view details)

Uploaded CPython 3.10 macOS 12.0+ ARM64

scikit_learn-1.5.0-cp310-cp310-macosx_10_9_x86_64.whl (12.1 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

scikit_learn-1.5.0-cp39-cp39-win_amd64.whl (11.0 MB view details)

Uploaded CPython 3.9 Windows x86-64

scikit_learn-1.5.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (13.4 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

scikit_learn-1.5.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (12.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

scikit_learn-1.5.0-cp39-cp39-macosx_12_0_arm64.whl (11.0 MB view details)

Uploaded CPython 3.9 macOS 12.0+ ARM64

scikit_learn-1.5.0-cp39-cp39-macosx_10_9_x86_64.whl (12.1 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

File details

Details for the file scikit_learn-1.5.0.tar.gz.

File metadata

  • Download URL: scikit_learn-1.5.0.tar.gz
  • Upload date:
  • Size: 7.8 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.1 CPython/3.11.9

File hashes

Hashes for scikit_learn-1.5.0.tar.gz
Algorithm Hash digest
SHA256 789e3db01c750ed6d496fa2db7d50637857b451e57bcae863bff707c1247bef7
MD5 a0a7b8e4bc47a8d9d805f0160ceb0312
BLAKE2b-256 bf8a06e499bca463905000f50e461c9445e949aafdd33ea3b62024aa2238b83d

See more details on using hashes here.

File details

Details for the file scikit_learn-1.5.0-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.5.0-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 855fc5fa8ed9e4f08291203af3d3e5fbdc4737bd617a371559aaa2088166046e
MD5 b0bfccf4d8c5f9eabd606ea2a9c8d5de
BLAKE2b-256 57edf607ebf69f87bcce2e3fa329bd78da8cafd3d51190a19d58012d2d7f2252

See more details on using hashes here.

File details

Details for the file scikit_learn-1.5.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.5.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a3a10e1d9e834e84d05e468ec501a356226338778769317ee0b84043c0d8fb06
MD5 e879c0c4ad4fdfc099ca2b0b399fef87
BLAKE2b-256 ae54e70102a9c12d27d985ba659f336851732415e5a02864bef2ead36afaf15d

See more details on using hashes here.

File details

Details for the file scikit_learn-1.5.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.5.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 d82c2e573f0f2f2f0be897e7a31fcf4e73869247738ab8c3ce7245549af58ab8
MD5 e61d72305a10015f3f081223c5342c05
BLAKE2b-256 66a1e64f125382f2fc46dd1f3a3c2d390f02db896e3803a3e7898c4ca48390e0

See more details on using hashes here.

File details

Details for the file scikit_learn-1.5.0-cp312-cp312-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.5.0-cp312-cp312-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 1b94d6440603752b27842eda97f6395f570941857456c606eb1d638efdb38184
MD5 14457e6b273c9d09ea43c02087bd4c5b
BLAKE2b-256 f94bc035ce6771dd56283cd587e941054ebb38a14868729e28a0f7c6c9ff9ebd

See more details on using hashes here.

File details

Details for the file scikit_learn-1.5.0-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.5.0-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 460806030c666addee1f074788b3978329a5bfdc9b7d63e7aad3f6d45c67a210
MD5 62b9b51d5b36d89896b75246591dfdba
BLAKE2b-256 1e21fe8e90eb7dc796ed384daaf45a83e729a41fa7a9bf14bc1a0b69fd05b39a

See more details on using hashes here.

File details

Details for the file scikit_learn-1.5.0-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.5.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 a03b09f9f7f09ffe8c5efffe2e9de1196c696d811be6798ad5eddf323c6f4d40
MD5 fe7a338e30408f78e5e3b20dece19cfb
BLAKE2b-256 ae206d1a0a61d468b37a142fd90bb93c73bc1c2205db4a69ac630ed218c31612

See more details on using hashes here.

File details

Details for the file scikit_learn-1.5.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.5.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 118a8d229a41158c9f90093e46b3737120a165181a1b58c03461447aa4657415
MD5 82868ecbce3d51710683634825b5806d
BLAKE2b-256 46c063d3a8da39a2ee051df229111aa93f6dca2b56f8080abd34993938166455

See more details on using hashes here.

File details

Details for the file scikit_learn-1.5.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.5.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 1f77547165c00625551e5c250cefa3f03f2fc92c5e18668abd90bfc4be2e0bff
MD5 b040be57eb404f2bd9e46d13297de86d
BLAKE2b-256 61f518dc69d22ec950225237d42b61d3338affc46e5ea63c27c6915f3678f5f2

See more details on using hashes here.

File details

Details for the file scikit_learn-1.5.0-cp311-cp311-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.5.0-cp311-cp311-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 4c0c56c3005f2ec1db3787aeaabefa96256580678cec783986836fc64f8ff622
MD5 eb7de623d04f843557e53f3066d1874b
BLAKE2b-256 6c97dfc635bd435655c1216756b543e0427579df144914a055a188d3c0ffd52f

See more details on using hashes here.

File details

Details for the file scikit_learn-1.5.0-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.5.0-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 2a65af2d8a6cce4e163a7951a4cfbfa7fceb2d5c013a4b593686c7f16445cf9d
MD5 f42c29a6c86cf3fd06050113e47d1ddc
BLAKE2b-256 50d470a9393ab88862c070a263a464042ab4e572a1353b4c3c308bc72a5b68cf

See more details on using hashes here.

File details

Details for the file scikit_learn-1.5.0-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.5.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 a90c5da84829a0b9b4bf00daf62754b2be741e66b5946911f5bdfaa869fcedd6
MD5 e0f77cea781b48a843ec1513375acc11
BLAKE2b-256 c91a7313c0d70ec8bfcf83cdd49696679d54d9d1a062a60fba270e7b4fc457f2

See more details on using hashes here.

File details

Details for the file scikit_learn-1.5.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.5.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2c75ea812cd83b1385bbfa94ae971f0d80adb338a9523f6bbcb5e0b0381151d4
MD5 505b901e7dfa9ee1f4248ab054f35dde
BLAKE2b-256 1e7d1a2ea8eb5b4df373c30c7418cf26305a4a05e2a0e56c80a8043b791595f3

See more details on using hashes here.

File details

Details for the file scikit_learn-1.5.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.5.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 df8ccabbf583315f13160a4bb06037bde99ea7d8211a69787a6b7c5d4ebb6fc3
MD5 d06a29ce35223886c5f8b6279d0c6cec
BLAKE2b-256 4812a31235236e7c62f5f7b68ea471fb82bac818be5b40f608a51a44fa8388bf

See more details on using hashes here.

File details

Details for the file scikit_learn-1.5.0-cp310-cp310-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.5.0-cp310-cp310-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 f405c4dae288f5f6553b10c4ac9ea7754d5180ec11e296464adb5d6ac68b6ef5
MD5 e06b4c69538b87feb7bfaa81c8c39ba1
BLAKE2b-256 91e542e5bf73aeadc0f32152de33593f3f97ae8a59bb4c46d7725e7d3d76f4c4

See more details on using hashes here.

File details

Details for the file scikit_learn-1.5.0-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.5.0-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 12e40ac48555e6b551f0a0a5743cc94cc5a765c9513fe708e01f0aa001da2801
MD5 3d4d10f1d65238a141439025a80a9d0e
BLAKE2b-256 87d1900698985c526e4c06c03028b9272993f248ae43a739a2f30a91d8f1a5af

See more details on using hashes here.

File details

Details for the file scikit_learn-1.5.0-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.5.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 057b991ac64b3e75c9c04b5f9395eaf19a6179244c089afdebaad98264bff37c
MD5 86585a9026257953be087b4128e15c5b
BLAKE2b-256 1b063718a4fd6639778a9d21664710a61cb18137b7480c6f43d86dcb88a6e172

See more details on using hashes here.

File details

Details for the file scikit_learn-1.5.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.5.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 261fe334ca48f09ed64b8fae13f9b46cc43ac5f580c4a605cbb0a517456c8f71
MD5 ccaa735ed1807ccaba05c053a465965d
BLAKE2b-256 e9ea44b8c639afe93c0b55d7f0852b663d18623132a6879516afe0380fa743b6

See more details on using hashes here.

File details

Details for the file scikit_learn-1.5.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.5.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 174beb56e3e881c90424e21f576fa69c4ffcf5174632a79ab4461c4c960315ac
MD5 311cb2ada2915a11326575ffff508e02
BLAKE2b-256 d18bc6f6deff9f416df34846bf78c2e64bdf632c2a0fbbb0fda964bcd9f0732b

See more details on using hashes here.

File details

Details for the file scikit_learn-1.5.0-cp39-cp39-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.5.0-cp39-cp39-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 47132440050b1c5beb95f8ba0b2402bbd9057ce96ec0ba86f2f445dd4f34df67
MD5 c2284549dd869eedce8a59d9a3e776d4
BLAKE2b-256 f3f0b0351b9750ac76a8ae7fbc40acd7f39834054d1b7c1a34a532e4b612bdcd

See more details on using hashes here.

File details

Details for the file scikit_learn-1.5.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.5.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 40fb7d4a9a2db07e6e0cae4dc7bdbb8fada17043bac24104d8165e10e4cff1a2
MD5 95cddb5966f45919b980e8561f1d8746
BLAKE2b-256 5747c0ada973384290fc34bb1b90567f509382450cb69878b697876c40c32227

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page