Skip to main content

A set of python modules for machine learning and data mining

Project description

Azure CirrusCI Codecov CircleCI Nightly wheels Black PythonVersion PyPi DOI Benchmark

https://raw.githubusercontent.com/scikit-learn/scikit-learn/main/doc/logos/scikit-learn-logo.png

scikit-learn is a Python module for machine learning built on top of SciPy and is distributed under the 3-Clause BSD license.

The project was started in 2007 by David Cournapeau as a Google Summer of Code project, and since then many volunteers have contributed. See the About us page for a list of core contributors.

It is currently maintained by a team of volunteers.

Website: https://scikit-learn.org

Installation

Dependencies

scikit-learn requires:

  • Python (>= 3.9)

  • NumPy (>= 1.19.5)

  • SciPy (>= 1.6.0)

  • joblib (>= 1.2.0)

  • threadpoolctl (>= 3.1.0)


Scikit-learn 0.20 was the last version to support Python 2.7 and Python 3.4. scikit-learn 1.0 and later require Python 3.7 or newer. scikit-learn 1.1 and later require Python 3.8 or newer.

Scikit-learn plotting capabilities (i.e., functions start with plot_ and classes end with Display) require Matplotlib (>= 3.3.4). For running the examples Matplotlib >= 3.3.4 is required. A few examples require scikit-image >= 0.17.2, a few examples require pandas >= 1.1.5, some examples require seaborn >= 0.9.0 and plotly >= 5.14.0.

User installation

If you already have a working installation of NumPy and SciPy, the easiest way to install scikit-learn is using pip:

pip install -U scikit-learn

or conda:

conda install -c conda-forge scikit-learn

The documentation includes more detailed installation instructions.

Changelog

See the changelog for a history of notable changes to scikit-learn.

Development

We welcome new contributors of all experience levels. The scikit-learn community goals are to be helpful, welcoming, and effective. The Development Guide has detailed information about contributing code, documentation, tests, and more. We’ve included some basic information in this README.

Source code

You can check the latest sources with the command:

git clone https://github.com/scikit-learn/scikit-learn.git

Contributing

To learn more about making a contribution to scikit-learn, please see our Contributing guide.

Testing

After installation, you can launch the test suite from outside the source directory (you will need to have pytest >= 7.1.2 installed):

pytest sklearn

See the web page https://scikit-learn.org/dev/developers/contributing.html#testing-and-improving-test-coverage for more information.

Random number generation can be controlled during testing by setting the SKLEARN_SEED environment variable.

Submitting a Pull Request

Before opening a Pull Request, have a look at the full Contributing page to make sure your code complies with our guidelines: https://scikit-learn.org/stable/developers/index.html

Project History

The project was started in 2007 by David Cournapeau as a Google Summer of Code project, and since then many volunteers have contributed. See the About us page for a list of core contributors.

The project is currently maintained by a team of volunteers.

Note: scikit-learn was previously referred to as scikits.learn.

Help and Support

Documentation

Communication

Citation

If you use scikit-learn in a scientific publication, we would appreciate citations: https://scikit-learn.org/stable/about.html#citing-scikit-learn

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

scikit_learn-1.5.2.tar.gz (7.0 MB view details)

Uploaded Source

Built Distributions

scikit_learn-1.5.2-cp313-cp313-win_amd64.whl (11.0 MB view details)

Uploaded CPython 3.13 Windows x86-64

scikit_learn-1.5.2-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (13.0 MB view details)

Uploaded CPython 3.13 manylinux: glibc 2.17+ x86-64

scikit_learn-1.5.2-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (12.1 MB view details)

Uploaded CPython 3.13 manylinux: glibc 2.17+ ARM64

scikit_learn-1.5.2-cp313-cp313-macosx_12_0_arm64.whl (11.0 MB view details)

Uploaded CPython 3.13 macOS 12.0+ ARM64

scikit_learn-1.5.2-cp313-cp313-macosx_10_13_x86_64.whl (12.0 MB view details)

Uploaded CPython 3.13 macOS 10.13+ x86-64

scikit_learn-1.5.2-cp312-cp312-win_amd64.whl (11.0 MB view details)

Uploaded CPython 3.12 Windows x86-64

scikit_learn-1.5.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (12.9 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

scikit_learn-1.5.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (12.1 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

scikit_learn-1.5.2-cp312-cp312-macosx_12_0_arm64.whl (11.0 MB view details)

Uploaded CPython 3.12 macOS 12.0+ ARM64

scikit_learn-1.5.2-cp312-cp312-macosx_10_9_x86_64.whl (12.1 MB view details)

Uploaded CPython 3.12 macOS 10.9+ x86-64

scikit_learn-1.5.2-cp311-cp311-win_amd64.whl (11.0 MB view details)

Uploaded CPython 3.11 Windows x86-64

scikit_learn-1.5.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (13.3 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

scikit_learn-1.5.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (12.5 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

scikit_learn-1.5.2-cp311-cp311-macosx_12_0_arm64.whl (11.0 MB view details)

Uploaded CPython 3.11 macOS 12.0+ ARM64

scikit_learn-1.5.2-cp311-cp311-macosx_10_9_x86_64.whl (12.1 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

scikit_learn-1.5.2-cp310-cp310-win_amd64.whl (11.0 MB view details)

Uploaded CPython 3.10 Windows x86-64

scikit_learn-1.5.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (13.3 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

scikit_learn-1.5.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (12.5 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

scikit_learn-1.5.2-cp310-cp310-macosx_12_0_arm64.whl (11.0 MB view details)

Uploaded CPython 3.10 macOS 12.0+ ARM64

scikit_learn-1.5.2-cp310-cp310-macosx_10_9_x86_64.whl (12.1 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

scikit_learn-1.5.2-cp39-cp39-win_amd64.whl (11.0 MB view details)

Uploaded CPython 3.9 Windows x86-64

scikit_learn-1.5.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (13.4 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

scikit_learn-1.5.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (12.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

scikit_learn-1.5.2-cp39-cp39-macosx_12_0_arm64.whl (11.0 MB view details)

Uploaded CPython 3.9 macOS 12.0+ ARM64

scikit_learn-1.5.2-cp39-cp39-macosx_10_9_x86_64.whl (12.1 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

File details

Details for the file scikit_learn-1.5.2.tar.gz.

File metadata

  • Download URL: scikit_learn-1.5.2.tar.gz
  • Upload date:
  • Size: 7.0 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.6

File hashes

Hashes for scikit_learn-1.5.2.tar.gz
Algorithm Hash digest
SHA256 b4237ed7b3fdd0a4882792e68ef2545d5baa50aca3bb45aa7df468138ad8f94d
MD5 e2df2bb829d461207fe8780f3e9a9cde
BLAKE2b-256 375944985a2bdc95c74e34fef3d10cb5d93ce13b0e2a7baefffe1b53853b502d

See more details on using hashes here.

File details

Details for the file scikit_learn-1.5.2-cp313-cp313-win_amd64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.5.2-cp313-cp313-win_amd64.whl
Algorithm Hash digest
SHA256 b7b0f9a0b1040830d38c39b91b3a44e1b643f4b36e36567b80b7c6bd2202a27f
MD5 47ce268b00f6049e1b627684c0d3063a
BLAKE2b-256 a5e70c869f9e60d225a77af90d2aefa7a4a4c0e745b149325d1450f0f0ce5399

See more details on using hashes here.

File details

Details for the file scikit_learn-1.5.2-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.5.2-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f7284ade780084d94505632241bf78c44ab3b6f1e8ccab3d2af58e0e950f9c12
MD5 5d9a923ed356fb2b1b9bace2c427fd28
BLAKE2b-256 a748fbfb4dc72bed0fe31fe045fb30e924909ad03f717c36694351612973b1a9

See more details on using hashes here.

File details

Details for the file scikit_learn-1.5.2-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.5.2-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 178ddd0a5cb0044464fc1bfc4cca5b1833bfc7bb022d70b05db8530da4bb3dd3
MD5 7275ace90e1f233f99416633db1086fe
BLAKE2b-256 b1c8f08313f9e2e656bd0905930ae8bf99a573ea21c34666a813b749c338202f

See more details on using hashes here.

File details

Details for the file scikit_learn-1.5.2-cp313-cp313-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.5.2-cp313-cp313-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 b0768ad641981f5d3a198430a1d31c3e044ed2e8a6f22166b4d546a5116d7908
MD5 22d5709efbd24629b63ab9d7729f6aae
BLAKE2b-256 d27917feef8a1c14149436083bec0e61d7befb4812e272d5b20f9d79ea3e9ab1

See more details on using hashes here.

File details

Details for the file scikit_learn-1.5.2-cp313-cp313-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.5.2-cp313-cp313-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 e9a702e2de732bbb20d3bad29ebd77fc05a6b427dc49964300340e4c9328b3f5
MD5 51a790cdc2b108cee701bd2d0dfc4918
BLAKE2b-256 a4508891028437858cc510e13578fe7046574a60c2aaaa92b02d64aac5b1b412

See more details on using hashes here.

File details

Details for the file scikit_learn-1.5.2-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.5.2-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 57cc1786cfd6bd118220a92ede80270132aa353647684efa385a74244a41e3b1
MD5 f180ca55c94593f686c1944a4333a428
BLAKE2b-256 aacec0b912f2f31aeb1b756a6ba56bcd84dd1f8a148470526a48515a3f4d48cd

See more details on using hashes here.

File details

Details for the file scikit_learn-1.5.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.5.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 394397841449853c2290a32050382edaec3da89e35b3e03d6cc966aebc6a8ae6
MD5 43eff58b3c980d48a23d15483fe82567
BLAKE2b-256 c629044048c5e911373827c0e1d3051321b9183b2a4f8d4e2f11c08fcff83f13

See more details on using hashes here.

File details

Details for the file scikit_learn-1.5.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.5.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 f60021ec1574e56632be2a36b946f8143bf4e5e6af4a06d85281adc22938e0dd
MD5 5a6b8391c66be55ec5a27329f40e8d3a
BLAKE2b-256 a1324a7a205b14c11225609b75b28402c196e4396ac754dab6a81971b811781c

See more details on using hashes here.

File details

Details for the file scikit_learn-1.5.2-cp312-cp312-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.5.2-cp312-cp312-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 3b923d119d65b7bd555c73be5423bf06c0105678ce7e1f558cb4b40b0a5502b1
MD5 2c02f52f611ce077c61126b92712122f
BLAKE2b-256 541a7deb52fa23aebb855431ad659b3c6a2e1709ece582cb3a63d66905e735fe

See more details on using hashes here.

File details

Details for the file scikit_learn-1.5.2-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.5.2-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 f932a02c3f4956dfb981391ab24bda1dbd90fe3d628e4b42caef3e041c67707a
MD5 65fb040910b02309117e38df195b0208
BLAKE2b-256 a4dbb485c1ac54ff3bd9e7e6b39d3cc6609c4c76a65f52ab0a7b22b6c3ab0e9d

See more details on using hashes here.

File details

Details for the file scikit_learn-1.5.2-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.5.2-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 6c16d84a0d45e4894832b3c4d0bf73050939e21b99b01b6fd59cbb0cf39163b6
MD5 178d7aa56f4875fb58ca8950e6cea4b2
BLAKE2b-256 171cccdd103cfcc9435a18819856fbbe0c20b8fa60bfc3343580de4be13f0668

See more details on using hashes here.

File details

Details for the file scikit_learn-1.5.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.5.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f8b0ccd4a902836493e026c03256e8b206656f91fbcc4fde28c57a5b752561f1
MD5 6fe05f23a7381ff53e984a422bab2d15
BLAKE2b-256 49213723de321531c9745e40f1badafd821e029d346155b6c79704e0b7197552

See more details on using hashes here.

File details

Details for the file scikit_learn-1.5.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.5.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 f763897fe92d0e903aa4847b0aec0e68cadfff77e8a0687cabd946c89d17e675
MD5 695027059779ac50aedcb9a4b012f30c
BLAKE2b-256 4c7562e49f8a62bf3c60b0e64d0fce540578ee4f0e752765beb2e1dc7c6d6098

See more details on using hashes here.

File details

Details for the file scikit_learn-1.5.2-cp311-cp311-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.5.2-cp311-cp311-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 1ff45e26928d3b4eb767a8f14a9a6efbf1cbff7c05d1fb0f95f211a89fd4f5de
MD5 7d49bf0fd79c614cbdf42e9e998c0f5f
BLAKE2b-256 cd7a19fe32c810c5ceddafcfda16276d98df299c8649e24e84d4f00df4a91e01

See more details on using hashes here.

File details

Details for the file scikit_learn-1.5.2-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.5.2-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 03b6158efa3faaf1feea3faa884c840ebd61b6484167c711548fce208ea09445
MD5 9f38f6211b4d6befbf20840d4ca4e68d
BLAKE2b-256 ff91609961972f694cb9520c4c3d201e377a26583e1eb83bc5a334c893729214

See more details on using hashes here.

File details

Details for the file scikit_learn-1.5.2-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.5.2-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 c15b1ca23d7c5f33cc2cb0a0d6aaacf893792271cddff0edbd6a40e8319bc113
MD5 6db965ce5449ca3d8f8d9cd1df85dbfe
BLAKE2b-256 4876154ebda6794faf0b0f3ccb1b5cd9a19f0a63cb9e1f3d2c61b6114002677b

See more details on using hashes here.

File details

Details for the file scikit_learn-1.5.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.5.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 3a686885a4b3818d9e62904d91b57fa757fc2bed3e465c8b177be652f4dd37c8
MD5 ce6b08e9d4bd41f9e19d6c1de16d805a
BLAKE2b-256 4c1ea7c7357e704459c7d56a18df4a0bf08669442d1f8878cc0864beccd6306a

See more details on using hashes here.

File details

Details for the file scikit_learn-1.5.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.5.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 8c412ccc2ad9bf3755915e3908e677b367ebc8d010acbb3f182814524f2e5540
MD5 98767d4bfd057a9b72e2ad2544b3cee3
BLAKE2b-256 7b31eb7dd56c371640753953277de11356c46a3149bfeebb3d7dcd90b993715a

See more details on using hashes here.

File details

Details for the file scikit_learn-1.5.2-cp310-cp310-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.5.2-cp310-cp310-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 2d4cad1119c77930b235579ad0dc25e65c917e756fe80cab96aa3b9428bd3fb0
MD5 eaa12998c02024b1098dd0c3d2833914
BLAKE2b-256 bfe03b6d777d375f3b685f433c93384cdb724fb078e1dc8f8ff0950467e56c30

See more details on using hashes here.

File details

Details for the file scikit_learn-1.5.2-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.5.2-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 299406827fb9a4f862626d0fe6c122f5f87f8910b86fe5daa4c32dcd742139b6
MD5 ef5dc83fe79080af0aa6e759962cdcb1
BLAKE2b-256 9889be41419b4bec629a4691183a5eb1796f91252a13a5ffa243fd958cad7e91

See more details on using hashes here.

File details

Details for the file scikit_learn-1.5.2-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.5.2-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 3bed4909ba187aca80580fe2ef370d9180dcf18e621a27c4cf2ef10d279a7efe
MD5 f90d4fe342857addbb674494f3457767
BLAKE2b-256 450574e453853c0b1b0773f46027848a17467f5dc9c5f15d096d911163d27550

See more details on using hashes here.

File details

Details for the file scikit_learn-1.5.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.5.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ca64b3089a6d9b9363cd3546f8978229dcbb737aceb2c12144ee3f70f95684b7
MD5 8250bcaf04bc336bced37979b3f0a1c0
BLAKE2b-256 2a9dd332ec76e2cc442fce98bc43a44e69d3c281e6b4ede6b6db2616dc6fbec6

See more details on using hashes here.

File details

Details for the file scikit_learn-1.5.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.5.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 643964678f4b5fbdc95cbf8aec638acc7aa70f5f79ee2cdad1eec3df4ba6ead8
MD5 89be00c2bd7dec35bf73070f43921052
BLAKE2b-256 120d94a03c006b01c1de27518d393f52ad3639705cd70184e106d24ffb3f28f6

See more details on using hashes here.

File details

Details for the file scikit_learn-1.5.2-cp39-cp39-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.5.2-cp39-cp39-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 52788f48b5d8bca5c0736c175fa6bdaab2ef00a8f536cda698db61bd89c551c1
MD5 e587fb0cca5561d1d959d9664ca899d1
BLAKE2b-256 1bbe386ef63d9d5e2ddf8308f6a164e4b388d5c5aecc0504d25acc6b33d8b09e

See more details on using hashes here.

File details

Details for the file scikit_learn-1.5.2-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for scikit_learn-1.5.2-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 757c7d514ddb00ae249832fe87100d9c73c6ea91423802872d9e74970a0e40b9
MD5 f33f5cda1ce596f178f6af578423eb0f
BLAKE2b-256 dba0e92af06a9fddd1fafbbf39cd32cbed5929b63cf99e03a438f838987e265d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page