Skip to main content

No project description provided

Project description

Torch Lure

Chandelure

Installations

pip install torchlure

Usage

import torchlure as lure

# Optimizers
lure.SophiaG(lr=1e-3, weight_decay=0.2)

# Functions
lure.tanh_exp(x)
lure.TanhExp()

lure.quantile_loss(y_pred, y_target, quantile=0.5)
lure.QuantileLoss(quantile=0.5)

lure.RMSNrom(dim=256, eps=1e-6)

# Noise Scheduler
lure.LinearNoiseScheduler(beta=1e-4, beta_end=0.02, num_timesteps=1000)
lure.CosineNoiseScheduler(max_beta=0.999, s=0.008, num_timesteps=1000):

Dataset

import gymnasium as gym
import numpy as np
import torch
from torchlure.datasets import MinariEpisodeDataset, MinariTrajectoryDataset

env = gym.make("Hopper-v4")
minari_dataset = MinariEpisodeDataset("Hopper-v4.2407")
minari_dataset.create(env, n_episodes=100, exist_ok=True)
minari_dataset.info()
# Observation space: Box(-inf, inf, (11,), float64)
# Action space: Box(-1.0, 1.0, (3,), float32)
# Total episodes: 100
# Total steps: 2,182

traj_dataset = MinariTrajectoryDataset(minari_dataset, traj_len=20)

traj = traj_dataset[2]
traj = traj_dataset[[3, 8, 15]]
traj = traj_dataset[np.arange(16)]
traj = traj_dataset[torch.arange(16)]
traj = traj_dataset[-16:]
traj["observations"].shape, traj["actions"].shape, traj["rewards"].shape, traj[
    "terminated"
].shape, traj["truncated"].shape, traj["timesteps"].shape
# (torch.Size([16, 20, 4, 4, 16]),
#  torch.Size([16, 20]),
#  torch.Size([16, 20]),
#  torch.Size([16, 20]),
#  torch.Size([16, 20]),
#  torch.Size([16, 20]))

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

torchlure-0.2407.9.tar.gz (19.1 kB view details)

Uploaded Source

Built Distribution

torchlure-0.2407.9-py3-none-any.whl (18.8 kB view details)

Uploaded Python 3

File details

Details for the file torchlure-0.2407.9.tar.gz.

File metadata

  • Download URL: torchlure-0.2407.9.tar.gz
  • Upload date:
  • Size: 19.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.12.2

File hashes

Hashes for torchlure-0.2407.9.tar.gz
Algorithm Hash digest
SHA256 98d4b95be64c7cc864b8f896a9df9ee9a814848a24f6d2e0b03c37b1ea364ae0
MD5 b9516abeb9cdca9f5313702af250bc9d
BLAKE2b-256 9682ca6de38927d2652790ffc8f8dbc8b4f17bae708d91afde6b98e6233b1ca1

See more details on using hashes here.

File details

Details for the file torchlure-0.2407.9-py3-none-any.whl.

File metadata

File hashes

Hashes for torchlure-0.2407.9-py3-none-any.whl
Algorithm Hash digest
SHA256 f263cf79153fbacff2f5aeaee9010eab3902a2bd6799c31da9725fa93a2b6e10
MD5 4c34526cd07ba874eb72f24e8cf8929c
BLAKE2b-256 6431cd9366d883d74052d079f20aee04006de70d1027a5c853d6f12e6fe59d35

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page